Zebrafish Optic and Ocular branches
Contributors: Lydia Gregg MA, CMI, FAMI, David T. White PhD, Gerard A. Lutty PhD & Jeff S. Mumm PhD
Similar to humans, the developing zebrafish eye is supplied by the intraocular hyaloid vasculature, the superficial ciliary vasculature, and the morphologically distinct choroidal vasculature. Here we provide a summary of the development of these vessels based on an observational study in collaboration with the Mumm Lab in the Johns Hopkins Department of Ophthalmology funded by the Johns Hopkins Catalyst Award program. Time-lapse confocal microscopy datasets of the ocular vasculature in transgenic zebrafish lines were acquired in vivo. Segmentations of these high-resolution datasets were performed, and surface models were exported for 3D visualization.
References
Ali, Z., Cui, D., Yang, Y., Tracey-White, D., Vazquez-Rodriguez, G., Moosajee, M., . . . Jensen, L. D. (2019). Synchronized tissue-scale vasculogenesis and ubiquitous lateral sprouting underlie the unique architecture of the choriocapillaris. Developmental biology.
Alvarez, Y., Cederlund, M. L., Cottell, D. C., Bill, B. R., Ekker, S. C., Torres-Vazquez, J., . . . Kennedy, B. N. (2007). Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC developmental biology, 7(1), 114.
Ames III, A. (1992). Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Canadian journal of physiology and pharmacology, 70(S1), S158-S164.
Ariga, J., Walker, S. L., & Mumm, J. S. (2010). Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. Journal of visualized experiments: JoVE(43).
Avanesov, A., & Malicki, J. (2004). Approaches to study neurogenesis in the zebrafish retina. In Methods in cell biology (Vol. 76, pp. 333-384): Elsevier.
Detrich, H. r., Kieran, M. W., Chan, F. Y., Barone, L. M., Yee, K., Rundstadler, J. A., . . . Zon, L. I. (1995). Intraembryonic hematopoietic cell migration during vertebrate development. Proceedings of the National Academy of Sciences, 92(23), 10713-10717.
Gailloud, P., Gregg, L., & Ruiz, D. S. (2009). Developmental anatomy, angiography, and clinical implications of orbital arterial variations involving the stapedial artery. Neuroimaging Clin N Am, 19(2), 169-179, Table of Contents. doi:S1052-5149(09)00010-0 [pii]
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., . . . Shima, D. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology, 161(6), 1163-1177.
Gregg, L., San Millán, D., Orru’, E., Tamargo, R. J., & Gailloud, P. (2015). Ventral and dorsal persistent primitive ophthalmic arteries. Operative Neurosurgery, 12(2), 141-152.
Hartsock, A., Lee, C., Arnold, V., & Gross, J. M. (2014). In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: A role for the lens in maturation and maintenance of the hyaloid. Developmental biology, 394(2), 327-339.
Hashiura, T., Kimura, E., Fujisawa, S., Oikawa, S., Nonaka, S., Kurosaka, D., & Hitomi, J. (2017). Live imaging of primary ocular vasculature formation in zebrafish. PloS one, 12(4), e0176456.
Hogan, B. M., & Schulte-Merker, S. (2017). How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Developmental cell, 42(6), 567-583.
Hsu, C.-H., Wen, Z.-H., Lin, C.-S., & Chakraborty, C. (2007). The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Current neurovascular research, 4(2), 111-120.
Isogai, S., Horiguchi, M., & Weinstein, B. M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental biology, 230(2), 278-301.
Kaufman, R., Weiss, O., Sebbagh, M., Ravid, R., Gibbs-Bar, L., Yaniv, K., & Inbal, A. (2015). Development and origins of zebrafish ocular vasculature. BMC developmental biology, 15(1), 18.
Kitambi, S. S., McCulloch, K. J., Peterson, R. T., & Malicki, J. J. (2009). Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mechanisms of development, 126(5-6), 464-477.
Li, Z., Joseph, N. M., & Easter Jr, S. S. (2000). The morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Developmental dynamics: an official publication of the American Association of Anatomists, 218(1), 175-188.
Mumm, J. S., Williams, P. R., Godinho, L., Koerber, A., Pittman, A. J., Roeser, T., . . . Wong, R. O. (2006). In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron, 52(4), 609-621.
Padget, D. H. (1944). The circle of Willis. Its embryology and anatomy. Intracranial arterial aneurysms, 67-90.
Padget, D. H. (1948). The development of cranial arteries in the human embryo. Contr Embryol Carneg Instn, 32, 205-261.
Padget, D. H. (1954). Designation of the embryonic intersegmental arteries in reference to the vertebral artery and subclavian stem. Anat Rec, 119, 349-356.
Padget, D. H. (1956). The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. Developmental Dynamics, 98(3), 307-355.
Padget, D. H. (1970). Neuroschisis and human embryonic maldevelopment. Journal of neuropathology and experimental neurology, 29(2), 192-216.
Proulx, K., Lu, A., & Sumanas, S. (2010). Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Developmental biology, 348(1), 34-46.
Saint-Geniez, M., & D’Amore, P. A. (2004). Development and pathology of the hyaloid, choroidal and retinal vasculature.
Schmitt, E. A., & Dowling, J. E. (1994). Early‐eye morphogenesis in the zebrafish, Brachydanio rerio. Journal of Comparative Neurology, 344(4), 532-542.
Shima, K., Kawasaki, T., Shimizu, A., Takiguchi, H., & Chigasaki, H. (1995). An ophthalmic artery occlusion after a craniotomy using the pterional approach: a report of three cases, one resulting in blindness. Jpn J Neurosurg, 4, 163-169.
Walls, G. (1967). The vertebrate eye and its adaptive radiation (2nd ed.): Hafner Publishing Company.